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For planar continua, upper and lower bounds are given for the growth of the
associated Fekete potentials, polynomials and energies. The main result is that for
continua K of capacity 1 whose outer boundary is an analytic Jordan curve, the
family of Fekete polynomials is bounded on K.

Our work makes use of precise results of Pommerenke on the growth of the
discriminant and on the distribution of the Fekete points. We also use potential
theory, including the exterior Green function with pole at infinity. The Lipschitz
character of this function determines the separation of the Fekete points.  © 2001

Academic Press

1. INTRODUCTION

Let K be a bounded continuum in the complex plane C. In honor of
Fekete [2], an N-tuple of points ({y, ..., {y) = K (with N>2) is called a
Fekete N-tuple for K if it maximizes the (absolute value of the) discriminant,

N N
def
AK)= ] 1G=Cl = max [T lz—zl (1)
Sk=1,j#k o INEK o1,k

The unbounded component of the complement K¢ of K in C=Cu {0} is
denoted by E. The Fekete N-tuples for K lie on its outer boundary I"=0F;
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the continua K and I” have the same Fekete N-tuples. The union of the
bounded components of the complement /¢ will be called D.
We recall some results of Fekete. The “N-th order diameters” of K,

dy(K) = A n(K)VN D, (2)

form a decreasing sequence whose limit d(K) is called the transfinite diameter
of K. The number d(K) is equal to the exterior mapping radius R(K) which
is defined as follows. Let w = @(z) be the 1 — 1 conformal map from E to the
exterior of some disc |w| < R, normalized such that &(z)=z+ (1) around
infinity. Then R = R(K) = d(K). Potential theory shows that d(K) =cap K, the
logarithmic capacity of K, see the classical paper by Polya and Szeg6 [ 13] and
cf. the survey [8]. Precise results on 4 ,(K) and the distribution of Fekete
points have been obtained by Pommerenke [14-17], cf. Sections 4 and 6
below.

For every Fekete N-tuple Z,=(({,, ..., {y) =K there is an N-th order
“Fekete measure” wy = wy(Zy), obtained by assigning masses or charges
1/N to each of the points {,, ..., {. The corresponding “Fekete potential”

1 1 X 1
dor () =~ 3
g lon@=y 2 lee 7 )

UN(z f log

may be compared with the classical equilibrium potential U®(z), where w
is the probability measure on K of minimal energy. We summarize what is
known and what we can derive from known results with the aid of simple
potential theory.

THEOREM 1.1.  For every bounded continuum K< C there are constants
¢, and ¢, such that for all N =2 and every N-th order Fekete measure w
on K,

logmin{N =3 d(z, I')} —c; < N{U(z) — U*¥(z)}
<log N+ loglog N + c,, VzeC. (4)

If K is convex, or the outer boundary of K is a Jordan curve I' of bounded
rotation or of class C>°, the term loglog N in the upper bound may be
omitted. If T is smooth, the quantity N =2 in the lower bound may be replaced
by N=2,

The upper bound in (4) for arbitrary continua is equivalent to a result
of Pommerenke [15] for polynomials, cf. the upper bound in (7). The
sharper upper bound log N + ¢, for special continua may be derived from
results of Pommerenke on the discriminant 4,(K) for such continua
[14-16], see Section 4 below. The lower bound in (4) depends on the
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separation of the Fekete points, see Sections 3 and 5. Here we also refer to
recent work by Gotz and Saff [4] on a more general problem for which
one can not expect results as precise as Theorem 1.1. In earlier work the
authors obtained estmates for the case of R* which for k =2 are less precise
than (4), cf. [12] and [10].

The inequalities (4) may be restated in terms of the Fekete polynomials

Ful(z)=Fy( H (z— ) (5)

It is well-known that the branch of F(z)"" which behaves like z at oo

converges to the mapping function &(z) on E as N — oo, cf. Hille [5],

Walsh [22]. For a study of the degree of approximation one may compare
|Fy(z)| with the N-th power of the function

aef [|D(z)] for zekE,

M = _ 6

2(2) {capK for zeD=DuUT. (6)

By (3) and (5) log |Fy| = —NU®», while log M ;= — U® (cf. Section 3).
Thus with e~“1= 4 and e“2= B, (4) may be restated as

Amin{N >, d(z, I')} <|Fy(z)|/M4(z)Y < BN log N (7)

for all N and all ze C. As indicated before, the general upper bound is due
to Pommerenke [ 157]; his work also shows that the upper bound in (7) can
never be less than 1. For the special continua mentioned in Theorem 1.1
the factor log N in the upper bound may be omitted, see Section 4. It is an
interesting question for which continua one may also omit the factor N. By
change of scale and the maximum principle, this question is equivalent to
the following.

Question 1.2. For which continua K of capacity 1 is the family of
Fekete polynomials uniformly bounded on K?

Examples of “good” continua are closed discs and segments. Our main
result below will be derived from Pommerenke’s precise description [17] of
the distribution of the Fekete points for analytic curves (Section 6).

THEOREM 1.3. The Fekete polynomials form a bounded family on any
compact set K of capacity 1 whose outer boundary I is an analytic Jordan
curve.

It is plausible that less smoothness will suffice, especially in the convex
case.
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2. RELEVANT POTENTIAL THEORY

Continuing with the notation of Section 1 we restrict ourselves to poten-
tial theory for bounded continua K < C, although much of the following is
valid for arbitrary compact sets of positive capacity, cf. Frostman [3]. For
a probability measure x4 on K the potential U# and the energy I(u) are
given by

Ut(z)=] log du(©), )=

K x

. log du(z) du(Q).

1 1
|z—{] |z—{l
The set K carries a unique probability measure @ of minimal energy, the
so-called equilibrium distribution:

I(w)=V=min I(u), it probability measure on K.

The support of w coincides with the outer boundary I” of K.

For the continuum K the exterior domain E (including oo) is regular for
the Dirichlet problem. This fact implies that U®(z) is equal to V
everywhere on D. The constant V' = V(K) is called the Robin constant; in
terms of V,

capK=e"". (1)

Discrete measures. Let puy=pn(z;, ..., zy) be the probability measure
corresponding to the system of N masses or charges 1/N at the (distinct)
points zy, ..., zy. The corresponding “discrete energy” is

Fu=v; Y log —
Un) =" og .
N NZj,k:l,j;ék |Zj_Zk|

It follows from Section 1 that the discrete energy /*(u,) is minimal for
N-tuples (zy, .., zy)= K if py is an N-th order Fekete measure w,=
oy, ..., {n). The corresponding discrete energy is equal to

1 N 1 1
I oy)=— lo = ——log A x(K). 2
(wy) N2j,k:;,j;ék gICj—CkI 2108 ~K) (2)

As N— oo, I*(wy) > I(w) and the Fekete measures w, are weak*-con-
vergent to w, cf. Frostman [3]. In the case where I'=0F is a Jordan curve,
it follows that

wn(y) = o(y) for every subarc ycT.

Remark. Conformal mapping shows that w may be interpreted as the
harmonic measure on I relative to E, evaluated at co.
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3. GREEN FUNCTION AND SEPARATION OF FEKETE POINTS

The exterior domain E of the continuum K has a “Green function” g(z)
with pole at infinity: by definition it is harmonic on E except at oo, where
it behaves like log |z| + @(1), and it has boundary values 0 on I'. One has
g(z) =log{|®(z)|/cap K} on E and it is convenient to extend g(z) to a
continuous function on C by the formula

g(z) =V—=U%2z). (1)

If I' is a Jordan curve of class C' ¢ (or just Dini-smooth), classical results
on conformal mapping imply that g is of class Lip 1 around 7, cf. Pommerenke’s
book [18]. For arbitrary continua one may adapt a result of Johnston
[6], Theorem 1, to obtain a suitable Lipschitz result.

ProrosiTION 3.1.  Let Q be a bounded simply connected domain and let
u be harmonic on Q and continuous on Q. Suppose in addition that u is of
class Lip /. with 2> % on the boundary 0Q in a neighborhood of z,. Then u
is of class Lip % in a neighborhood of z, in Q.

Johnston’s Lipschitz hypothesis and conclusion were global in character,
but his proof may be adjusted to give the local result.

COROLLARY 3.2. For an arbitrary bounded continuum K, the Green func-
tion g and the equilibrium potential U” (which are constant on D) are of
class Lip 3 on a neighborhood of the outer boundary T.

Proof. For z, € I’ one can find a closed disc containing /” whose boundary
C meets I somewhere away from z,. Now apply Proposition 3.1 to g on
the (or a) simply connected domain bounded by /" and C which has z, as
a boundary point.

The case of a segment shows that the (general and global) result Lip 1
is sharp. The corollary could also be derived from work by Siciak, see [20]
Lemma 1.

Separation Result. For general and various special continua the separa-
tion of the Fekete points has been discussed by Kévari and Pommerenke
[11]. Here we emphasize the connection with the Lipschitz character of g,
cf. Gotz and Saff [4].

PROPOSITION 3.3.  Suppose g is in Lip 4 around I (locally) with < < 1.
Then there is a constant 6 >0 such that for all N and every N-th order
Fekete N-tuple ({4, ..., {y) on K (locally)

min |{;—{, | > /N (2)
J#k
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Proof. By the maximum property of Fekete points, the polynomial

N —(;
po= [] =Y

j=1j#k Ck—éj

of degree N — 1 has absolute value <1 on I". Now log |p,(z)]| —(N—1) g(z)
1s harmonic on E and <0 on I, hence <0 on E. The same bound holds
on D. Thus since g({,)=0, the Lipschitz property of g implies that for
some constant A,

log |pi(2)| < (N—=1){g(z) — g({p)} SNA [z =,
<A for |z—( | <N VA

For |w—{,| <3 N~Y* Cauchy’s inequality next gives

1

Pl <o | DN 1| < ge w1
2n g =N |2 — W]

Now let j#k. If |{;— ;| >3 N~"* there is nothing to prove. Otherwise

I{;— (| <3N ~"* and then a good lower bound is obtained (as in [11])

from the formula

¢
1= 1pul) = ol = |[[ Pt o] <16, ol 4

Sk

The above proof confirms the lower bounds of Kévari and Pommerenke
[11] for the distance between N-th order Fekete points on bounded
continua (6/N?) and on C!“smooth (or slightly less smooth) Jordan
curves (0/N). For the smooth and the convex case they have also shown
that the distance between neighboring points in Fekete N-tuples is bounded
above by const/N.

4. THE UPPER BOUNDS IN THEOREM 1.1

In the following ¢, B, ¢, ¢” will denote constants depending only on K;
they may vary with the context. For the derivation of the upper bounds we
summarize certain results of Pommerenke [ 14, 16] for the discriminant 4 (K).

THEOREM 4.1. For any bounded continuum K

NV < Ay(K)/(cap K)YV =D < N¥(4e~!log N+ 4)V. (1)
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In the convex, bounded rotation or C*¢ case the final factor may be replaced
by an expression of the form cB".
We can now prove
PrROPOSITION 4.2. For all N>=2 and every N-th order Fekete measure
ony=wy((q, ... (y) on K,
—(1=N"1) U*(z) < —I*(wy) =N ~*log 4(K)
<—-(1-N"YHYV+N-'logN
+N~'loglog N +¢/N, Vzek. (2)

For the special classes of continua in Theorems 1.1 and 4.1 the log log-term
may be omitted.

Proof. The minimum property of the Fekete energy implies that for
each k,

def 1 N
Wilz) = Nj:LZj#kIOg' —C | Wie(Ce)s Vzek. (3)

Taking the arithmetic mean of these inequalities for k =1, ..., N one concludes
that on K

N—-1 1 N 1
—U"(z2)=2— log ———=I1*(wy). 4)
N sz,k:;j;ék |€ Ck| v

The proof is completed by application of formulas (1) and (2) of Section
2 and Theorem 4.1.

The desired upper bounds in Theorem 1.1 now follow from

ProrosITION 4.3.  For all N and every Fekete measure wy on K,
U®(z)— U*Nz)<(log N)/N + (loglog N)/N +¢/N, vzeC. (5)

For the special classes of continua in Theorem 1.1 the log log-term may be
omitted.

Proof. By Proposition 4.2 one has an inequality (5) on I” where U® =
Now U® — U~ is harmonic both inside and outside /" (including oo), so that
(5) follows from the maximum principle for all ze D U E. The proof for the
special continua is similar.

Comparison of Energies. Since I(w)=V, formulas (1) and (2) of Section
2 and Theorem 4.1 imply
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THEOREM 4.4. For every bounded continuum

(log N)/N+ V/N <Il(w) —I*(wy)
< (log N)/N + (loglog N)/N + ¢/N. (6)

For the special continua in Theorem 1.1 the log log-term may be omitted.

On the circle C(0, R) the Fekete N-tuples are given by equally spaced
points. Here

I(w)= —log R, I*(wy)=—(1—1/N)log R—(log N)/N.

Remark. Not distinguishing between discrete energy and “ordinary”
energy, Hille [ 5], Eq. (16.4.13), erroneously assumed that (in our notation)
I*(wy) > ().

5. THE LOWER BOUND IN THEOREM 1.1

The method below is similar to one used by G6tz and Saff [4]. Integra-
tion of inequality (3) in Section 4 with respect to @ shows that

W@@0<JW%@F4UN) Y UG =0-1N)V. (1)

J=1j#k

The gradient of log |z —{|~! may be represented by the complex number

—1/(z—{)* where the * denotes the complex conjugate. Thus by the
definition of W,

1 N 1
|grad W (z)| <N Z

jeter 12 =Gl

We now take |z —{, | <J/2N? where J is a separation constant for Fekete
N-tuples on K as in Proposition 3.3 with A= 3. Then |z — ;| > 6/2N? for all
j#k, hence

lgrad W (z)| <2N?/0.
It follows that

Wi(z) = Wi({e) <2/N for |z—{|=e<I/N>
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Hence for these same values of z, cf. formula (3) in Section 1,
U»¥(z) = Wi (z) +(1/N) log(1/e)
< Wi(&p) +(1/N) log(1/e) +2/N
<V+(1/N)log(l/e)+(2—V)/N. (2)

In the last step we have used (1). Continuing with the same values of z we
now use the Lipschitz property of U from Corollary 3.2:

V—U®z)=U"{,)—U"z)<c |Z—Ck|1/2<6'(5/N3)1/2. (3)
Combining (2) and (3) we obtain the result
N{U®¥(z) — U®(z)} <log(1/e) + ¢’ for |z—Cp| =e<O/N>.  (4)

Observe that inequality (4) is independent of k, hence it actually holds
on the union of the circles C({,, ¢). Now the first member of (4) is sub-
harmonic on the domain Q, obtained from C by omitting the closed discs
ALy, ¢€). For e =g,= /N> one concludes that

N{U*¥(z) — U®(z)} <log(N3/6) + ¢ =log N*> +¢” throughout 2, .
(5)

For z in a disc 4({,, &) one has |z —{,| =& <eg, and then inequality (4)
shows that

N{U®N(z)— U”(z)} <log(1/e) + ¢’ <log(1/d(z, "))+ ¢ (6)

Combination of (5) and (6) establishes the lower bound in Theorem 1.1
with « =3 and ¢; =max(c/, ¢").

If the outer boundary of K is a (Dini-) smooth Jordan curve the separation
0/N of the Fekete points allows a = 2.

6. RESULTS ON QUESTION 1.2

It is easy to see that closed discs or circles and segments are “good” in
the sense of Question 1.2. For the unit circle one has Fy(z) =z — e® where
s may be any real number, hence |Fy(z)| <2 for |z| =1.

For the segment I'=[ —1, 1] of capacity 3 one may follow Stieltjes and
use equilibrium considerations to obtain a differential equation for y = F(x):

(1—x%) y"+ N(N—1) y=0. (1)
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Classical considerations now give

2N

IR TNEIRY M)

Fo(x) = exlx?— 1) Py_y(x) =2V <

where P, denotes the Legendre polynomial of degree k, cf. Szegd’s book
[21]. A standard inequality will then show that |Fu(x)| <¢/2" on I' ([21]
Section 7.33).

The case of analytic curves. We assume now that K is an analytic
Jordan curve I” (or the closure of the interior of such a I") which has been
normalized to capacity 1 by a change of scale. Roughly speaking, the
Fekete points then correspond to appropriately shifted roots of unity under
the conformal map w = @(z). We let z= ¥(w) denote the inverse map from
the exterior of C(0, 1) to E so that ¥(w)=w+ (1) around infinity. Our
main result here is Theorem 1.3 or equivalently,

THEOREM 6.1. On an analytic Jordan curve I' of capacity 1 the Fekete
polynomials form a bounded family.
Proof. The proof proceeds in a number of steps.

Step 1. Associated with the conformal map ¥ there is a representation

Y(w)—¥ et
log M: - Z amnM}_mU_na |M;|7 |U| = 1) (2)
w—0 mon=1

where one has taken the branch of the logarithm which vanishes at v =w = o0;
the coefficients a,,,, come from the Faber polynomials for I". For the moment
it will be enough to suppose that I” is of class C** Then ¥(w) will be of
class C*# for |w| =1 (we always assume 0 < ¢ < 1). Moreover, the v-derivative
of (2),

P (v) L 19w
P()—P(w) v—w 2 %(w)

+0(lv—wl*), (3)

will be uniformly bounded for |w| = |v| = 1, cf. Pommerenke [ 18], Section 3.3.

Step 2. We need a simple numerical integration formula with remainder
for C! functions f(v) on the unit circle. Using arbitrary equally spaced points

vy =e", s.=0+2nk/N, k=1,.,N (4)
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one has the familiar result (cf. for example [7])

n 1 X
[ renge=y X fon| <17 | (5)

>

This formula may be used to prove a boundedness result for the “Fejér
polynomials”

N
z)= n (z—2zg), zp=¥(vg)

which vanish at the conformal images of equally spaced points v;. Assum-
ing that I is of class C*¢ we may apply (5) to the function f(v) given by
the real part of (2). For |w|=1 we thus find

§ |#(w) - W(vkn:NonlOg|W<Tv)—vf(|e”)|dt

[w—v,] w—e” 2n

+0(1),

where the constant in the ¢-term depends only on 7. By (2) the integral is
equal to zero. The conclusion is that for z e I, so that |w| =|®(z)| =1, and
for N>2,

log [Gy(2)[ = ), log [¥(w)— ¥(vy)]

1

TMz TMz

log [w—v |+ O(1) < O(1), (6)

1

again with a constant in the (-term that depends only on I

(The boundedness of the family of Fejér polynomials has actually been
proved under weaker conditions on 7, cf. Curtiss [ 1], Shen and Zhong
[197 and Zhong [23].)

Step 3. In what way do the Fekete points deviate from Fejér points?
For analytic curves there is a beautiful result by Pommerenke [17].

THEOREM 6.2. For every analytic Jordan curve I there is a real-analytic
function ¢ of period 2n and average zero with the following property. For the
Fekete N-tuples

Lo=W(e%), k=1,.,N, 0<0,<0,<---<0y<2nm
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on I there are shifts o (depending on the N-tuple) such that

O =51+ (1/N) ¢(sg) + T, Sx=0+2nk/N, k=1, .,N,

te=0(/log NIN?), ¥ || = O(1/N). "
Here the constants in the O-terms depend only on T
It is convenient to introduce the notations
h(t)y=1t+(1/N) ¢(1), Wy = e, (8)
Then on the circle {|w|=1}, by (5),
121 log [#w) = #lw)| YI(KV) :z;(|wk)| =N LG log W(KV):;,::(hU)' Zd—:rJr o). (9)

This time, the integral need not vanish, but it is O(1/N): the integral becomes
zero if we replace dt by dh(¢) = {1+ (1/N) ¢'(¢)} dt. By the boundedness of the
function in (3) and the smallness of the remainders in (7) we may next replace
the points w, = e ~"*e“% in (9) by e”. Thus the points ¥(w,) are replaced
by the Fekete points ¥(e%)={,. It follows that for z= ¥(w)e T,

Fu() =T 12— Ll < CTT lw—e™], (10)

with a constant C that depends only on 7.

Step 4. It remains to show that the products [[Y_, |w—e™%]| form a
bounded family on the unit circle. We will first verify that the maximum of
such a product is attained roughly halfway between consecutive points e,

By rotation one may assume that the product

[Tle"—e® | =[] 2sin%(t—0,)l, t real
takes on its maximum value at z=0. Then by differentiation
Y tcot30,=0. (11)
To exploit (11) it is convenient to write 0, _, —27n =60 _, and to relabel the
Fekete points {, = ¥(e”) in such a way that their indices k run from
[IN]—N+1to [ N]. To simplify the notation we take N even, N =2p.

The corresponding 6, ’s satisfy the inequalities

0_,1<:--<0,<0<0,<---<0,.
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(If N=2p+1 one may add a point § _, which will not cause a problem in
the sequel.) By (7) we have 0, — 0y =n+ O(1/N)and 0, — 0 _,, , =7+ O(1/N),
hence our points 6, and s, lie on an interval [ —z— O(1/N), =+ O(1/N)].
Now observe that

1 1 1
f(X)ZECOtEX—;

is a smooth odd function on a neighborhood of [ —z, 7] and that the
points 6, differ from equidistant points s), =s,+ ¢’ in [ —x, 7] by at most
O(1/N). 1t follows that

roo/1 1 1\ N = .
,,Z+1<z“’t20k‘ek>:mf,,ﬂx)dx%(l):ou),

cf. for example [7]. Hence by (11)

P

Y —=0(1) as N- oo. (12)
P+

By (7) one has 0, —0,=2n/N + O(/log N/N?). We show how to derive
from (12) and (7) that

T 1 i1 1
=— — = —— — . 1
0, N+O<N>’ 0, N+O<N> (13)

Suppose to the contrary that for some sequence N — co one has
N6, > 2o (so that 0 <o < 1) with a# 1. Then by (7) for k=0

NO 1 2n=a+k+OK/N)+o(1), NO_.2n=a—1—k+0OK/N)+o(l).

Suppose first that a #0 or 1. Combining 1/0, ,, with 1/0_, and summing
over 0 <k <p—1, one would obtain for the special N — oo that

LA

Y —=(1-2x)c,N+o(N) with ¢, >0,
Ok

p+1

in contradiction to (12). To rule out the possibility that x=0 or a =1 one
may carry out the paired summation just over 1 <k <p — 1. This will show
that 1/6,+ 1/0, = O(N).

Step 5. It is now easy to complete the proof. Continuing with the
set-up of step 4 we will compare the maximum [ |1 —e®%| of TT |w — e™|
on the unit circle with [T |1 —e“|, where we take 1, =5, + 0y — 5o — 7o. The
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comparison product is equal to |1 —e™%~%)| which is bounded by 2.
Observe that by (7)

Or—t,=0,—5,— 0o+ 50+ 7,
1
=N {d(s2) — d(s0)} + 7 = O(|k|/N?) + 7. (14)

In particular ¢, and 6, will have the same sign for all large M.
The logarithm of the quotient of the products is

L | L §
sin 5 0, —sin 5 ¢ |0, — ;]
kK kgz k

k

i log sin 5 6,

—p+1

<X

k

(15)

SHESH sin 3 7, 2 |sin 7]

In the final sum, the numerators of the terms with 1 < |k| <p are bounded
by const- {|k|/N?)+ |t;|}, cf. (14), while the denominators are bounded
from below by ¢ |k|/N with positive c. Since the term with kK =0 remains
bounded as N — oo, it follows that the sums (15) are <O(1).

Conclusion. The products []Y_, |w—e"| are bounded on the circle
C(0, 1) by a constant independent of N, and by (10) the same is true for
the Fekete polynomials on I

Remark. The same proof works for the “roundish” curves of class C*¢
considered in [7]. Here the 0,’s of the Fekete points ¥(e™) satisfy (7)
with 7, = O(1/N?). The proof can probably be made to work for all C**
curves by further refinement of Pommerenke’s method ([ 17, part 11]) as
used in [9].

7. FURTHER DISCUSSION ON QUESTION 1.2

As before, let I" be the outer boundary of K and cap /"= 1. By the maximum
property of Fekete points,

Mi(2) € [] 12=GI<S M) =Fn(&)l,  VzelandVk, (1)

ﬂ [Fn(C)l = Ay =An(I). (2)

We suppose now that K is convex or smooth. Then by Theorem 4.1,

[ F3(C)l d—Efrnm |Fiy(Co)| S AN <ceN. (3)



124 KOREVAAR AND MONTERIE

Recall that neighboring Fekete points have distance < c¢'/N (Section 3).
Hence for ze I" between {, and a neighbor, cf. (1),

|Fn(2)] = [z =5l My(z) <cc'. (4)

Some Speculation. Precise analysis of the Fekete polynomials in the
exterior of an analytic curve I” shows, cf. Pommerenke [17],

Fyx ®N(@) 12, Flyx NoV=1(@) 2 —(1)2) &¥(@') "2 @',
Thus on the level curve {|®@| =R} in E and for fixed large N,
[Fy|/RY~|@'| 712 |Fy|/NRY ™ = |0'|'2. (3)

Even if I" is just (locally) smooth, this should give an indication of the
(local) qualitative behavior of |Fy| and |F'y| on the curve.

Conjecture 7.1. In the convex or smooth case, |F| will be maximal on
I' near the Fekete points where |@'| is minimal, hence where the magnifica-
tion under the map @ is least. Similarly the relative maxima of |F'y| will
be smallest where |@’| is minimal.

By (4), curves for which this is correct are “good” in the sense of
Question 1.2.

Example. The interval I=[ —1, 1] revisited. The differential equation
(1) in Section 6 for the Fekete polynomial y=F, may be used to show
that |y| is decreasing along the nonnegative zeros of y'. Indeed, if one
multiplies the differential equation by 2y’ and then integrates from the zero
7,20 of y' to the zero n, >#;, one finds that

Mk Mk
NV=1){p0)? = y)?} = [ (2= D) dy'(x) = = [ 2x0'(x)? dx <0,
j j
Similarly, |y’| is increasing along the nonnegative zeros ¢; of y:

V(&) — y’(éj)z B _fk 1
N(N—1)

& 2x
2= 2
3 12 dy(x) —féj =222 y(x)* dx>0.

It follows that |F,| assumes its maximum on [/ at the first nonnegative zero
of F’y and that the smallest relative maximum of |F'y| on I occurs at the
first nonnegative Fekete point. Since by Theorem 4.1 one has A, (1)Y¥ 2V
< ¢/, the argument which led to (4) will confirm that max; |Fy| < const/2".

For a Jordan curve I" in the shape of a square one may speculate that
the maximum of |F,| on I" occurs near the middle of the sides, while the
relative maxima of |F’y| increase from the middle of the sides towards the
vertices. If this speculation is correct, a square is also “good”.
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